Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis
نویسندگان
چکیده
Glucose, xylose and arabinose are the three most abundant monosaccharide found in lignocellulosic biomass. Effectively and simultaneously utilization of these sugars by microorganisms for production of the biofuels and bio-chemicals is essential toward directly fermentation of the lignocellulosic biomass. In our previous study, the recombinant Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain was already shown to efficiently utilize xylose for production of acetoin, with a yield of 0.36 g/g xylose. In the current study, the Bacillus subtilis168ARSRCPΔacoAΔbdhA strain was further engineered to produce acetoin from a glucose, xylose, and arabinose mixtures. To accomplish this, the endogenous xylose transport protein AraE, the exogenous xylose isomerase gene xylA and the xylulokinase gene xylB from E. coli were co-overexpressed in the Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain, which enabled the resulting strain, denoted ZB02, to simultaneously utilize glucose and xylose. Unexpectedly, the ZB02 strain could simultaneously utilize glucose and arabinose also. Further results indicated that the transcriptional inhibition of the arabinose transport protein gene araE was the main limiting factor for arabinose utilization in the presence of glucose. Additionally, the arabinose operon in B. subtilis could be activated by the addition of arabinose, even in the presence of glucose. Through fed-batch fermentation, strain ZB02 could simultaneously utilize glucose, xylose, and arabinose, with an average sugar consumption rate of 3.00 g/l/h and an average production of 62.2 g/l acetoin at a rate of 0.864 g/l/h. Finally, the strain produced 11.2 g/l acetoin from lignocellulosic hydrolysate (containing 20.6g/l glucose, 12.1 g/l xylose and 0.45 g/l arabinose) in flask cultivation, with an acetoin yield of 0.34 g/g total sugar. The result demonstrates that this strain has good potential for the utilization of lignocellulosic hydrolysate for production of acetoin.
منابع مشابه
Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains.
Lignocellulosic feedstocks are thought to have great economic and environmental significance for future biotechnological production processes. For cost-effective and efficient industrial processes, complete and fast conversion of all sugars derived from these feedstocks is required. Hence, simultaneous or fast sequential fermentation of sugars would greatly contribute to the efficiency of produ...
متن کاملSimultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains
BACKGROUND The efficient microbial utilization of lignocellulosic hydrolysates has remained challenging because this material is composed of multiple sugars and also contains growth inhibitors such as acetic acid (acetate). Using an engineered consortium of strains derived from Escherichia coli C and a synthetic medium containing acetate, glucose, xylose and arabinose, we report on both the mic...
متن کاملConversion of cellulose and hemicellulose of biomass simultaneously to acetoin by thermophilic simultaneous saccharification and fermentation
BACKGROUND Acetoin (3-hydroxy-2-butanone), the precursor of biofuel 2,3-butanediol, is an important bio-based platform chemical with wide applications. Fermenting the low-cost and renewable plant biomass is undoubtedly a promising strategy for acetoin production. Isothermal simultaneous saccharification and fermentation (SSF) is regarded as an efficient method for bioconversion of lignocellulos...
متن کاملEfficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase
Acetoin is widely used in food and cosmetic industry as taste and fragrance enhancer. For acetoin production in this study, Saccharomyces cerevisiae JHY605 was used as a host strain, where the production of ethanol and glycerol was largely eliminated by deleting five alcohol dehydrogenase genes (ADH1, ADH2, ADH3, ADH4, and ADH5) and two glycerol 3-phosphate dehydrogenase genes (GPD1 and GPD2). ...
متن کاملAccelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine
Because of their abundance in hemicellulosic wastes arabinose and xylose are an interesting source of carbon for biotechnological production processes. Previous studies have engineered several Corynebacterium glutamicum strains for the utilization of arabinose and xylose, however, with inefficient xylose utilization capabilities. To improve xylose utilization, different xylose isomerase genes w...
متن کامل